In number theory and mathematical logic, a Meertens number in a given number base b {\displaystyle b} is a natural number that is its own Gödel number. It was named after Lambert Meertens by Richard S. Bird as a present during the celebration of his 25 years at the CWI, Amsterdam.

Definition

Let n {\displaystyle n} be a natural number. We define the Meertens function for base b > 1 {\displaystyle b>1} F b : N N {\displaystyle F_{b}:\mathbb {N} \rightarrow \mathbb {N} } to be the following:

F b ( n ) = i = 0 k 1 p k i 1 d i . {\displaystyle F_{b}(n)=\prod _{i=0}^{k-1}p_{k-i-1}^{d_{i}}.}

where k = log b n 1 {\displaystyle k=\lfloor \log _{b}{n}\rfloor 1} is the number of digits in the number in base b {\displaystyle b} , p i {\displaystyle p_{i}} is the i {\displaystyle i} -prime number, and

d i = n mod b i 1 n mod b i b i {\displaystyle d_{i}={\frac {n{\bmod {b^{i 1}}}-n{\bmod {b}}^{i}}{b^{i}}}}

is the value of each digit of the number. A natural number n {\displaystyle n} is a Meertens number if it is a fixed point for F b {\displaystyle F_{b}} , which occurs if F b ( n ) = n {\displaystyle F_{b}(n)=n} . This corresponds to a Gödel encoding.

For example, the number 3020 in base b = 4 {\displaystyle b=4} is a Meertens number, because

3020 = 2 3 3 0 5 2 7 0 {\displaystyle 3020=2^{3}3^{0}5^{2}7^{0}} .

A natural number n {\displaystyle n} is a sociable Meertens number if it is a periodic point for F b {\displaystyle F_{b}} , where F b k ( n ) = n {\displaystyle F_{b}^{k}(n)=n} for a positive integer k {\displaystyle k} , and forms a cycle of period k {\displaystyle k} . A Meertens number is a sociable Meertens number with k = 1 {\displaystyle k=1} , and a amicable Meertens number is a sociable Meertens number with k = 2 {\displaystyle k=2} .

The number of iterations i {\displaystyle i} needed for F b i ( n ) {\displaystyle F_{b}^{i}(n)} to reach a fixed point is the Meertens function's persistence of n {\displaystyle n} , and undefined if it never reaches a fixed point.

Meertens numbers and cycles of Fb for specific b

All numbers are in base b {\displaystyle b} .

See also

  • Arithmetic dynamics
  • Dudeney number
  • Factorion
  • Happy number
  • Kaprekar's constant
  • Kaprekar number
  • Narcissistic number
  • Perfect digit-to-digit invariant
  • Perfect digital invariant
  • Sum-product number

References

External links

  • OEIS sequence A189398 (a(n) = 2^d(1) * 3^d(2) * ... * prime(k)^d(k))
  • OEIS sequence A246532 (Smallest Meertens number in base n, or -1 if none exists.)

Meertens schreef graag en veel over zichzelf Zeeland Geboekt pzc.nl

Hoogleraar Radboud nieuwe directeur Meertens Instituut

Number 64 within two line text hires stock photography and images Alamy

Kontakt Praxis Meertens Innere Allgemeinmedizin

Meneer Meertens vertelt Paastradities Dagblad van het Noorden